
~ Pergamou 
S0021-8928 (96)00025-1 

J. Appt Maths Mechs, Vol. 60, No. 2, pp. 191-197, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
00214928/96 $24.00+0.00 

STABILIZATION OF DYNAMICAL SYSTEMS 
UNDER PERSISTENT PERTURBATIONS? 

N. V. B A L A S H E V I C H ,  R.  G A B A S O V  and  F. M. K I R I L L O V A  

Minsk 

(Received 30 January 1995) 

The classical problem oil the stabilization of dynamical systems is solved by methods of the theory of optimal processes. An aufiliary 
optimal control problem includes a test perturbation. An optimal control of the feedback type is constructed for each generalized 
position, using an open-loop control which is optimal for the test perturbation. Such controls generalize classical feedback in 
the sense that no allowance is made for predicted perturbations. © 1996 Elsevier Science Ltd. All rights reserved. 

In view of the need to allow for interference in stabilizer design, attention has recently been given to 
the relevant questJions in stability theory and control theory. There are three main trends: the theory 
of stability with random perturbations [1], the theory of linear-quadratic optimization with random 
perturbations [2], and H .  control theory with deterministic perturbations [3, 4]. 

In this paper a new type of feedback is proposed for stabilizing dynamical systems. First, the 
construction is caEied out for a special optimal control problem, not of the traditional linear-quadratic 
type, involving direct restrictions on the control. In addition, the auxiliary problem contains perturbations, 
thus differing from models underlying classical feedback design. Finally, the perturbations are assumed 
to be non-stochastic, but, being deterministic, allowance for them follows techniques of neither/-F" 
control theory nor guaranteed optimization theory. The feedback used in this paper is in a sense 
intermediate in position between classical feedback and the feedback studied in H .  control theory. A 
special case of otrr stabilization method, based on classical optimal feedback design, was published 
previously [5]. 

1. STATEMENT OF THE PR OB L E M 

Suppose that the dynamical system to be stabilized is described, together with the control used for 
the purpose, by the equation 

x = A x + b u ,  ( x ~ R  n, u ~ R )  (1.1) 

The actual states x*(x) of the system at any time x are produced by the action of a control applied 
up to time x, say u*(t), t e To = [0, x[, and a perturbation w* (t), t e To, i.e. x*(t), t ~ To, is a solution 
of the equation 

k = Ax + bu* (t) + qw* (t), x(O) = x o (1.2) 

We shall assume throughout that at any time x t> 0 the values of the state vector x*(x) can be measured 
accurately. 

To set up each wdue u*(x) of the control we shall use the available information on possible realizations 
of the noise, according to which the perturbations affecting the system, w*(x), x >i O, are elements of 
a given set W. There are three types of usable information on the perturbations: (1) classical information, 
in which it is assuraed that up to the present (time x) the perturbation is effective, but not after x, i.e. 
the control system is described up to time x by system (1.2) but for t t> x by Eq. (1.1); (2) probabilistic 
information, in which Wis a set of stochastic processes; (3) guaranteed, in which Wis a set of piecewise- 
continuous (or measurable) functions with values in a given bounded set. 

The basic idea of the approach proposed here to the stabilization of dynamical systems subject to 
persistent perturbations is to use test perturbations: at each given time x, information on the controls 
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activated up to time x, sayx*(.) = (x*(t), t • To), and on the actually realized trajectory x*(-) = (x*(t), 
t e To) is used to construct a test perturbation ~ ( . )  = (~(t) ,  t • T+ = [% x + 0[) and an auxiliary problem 
is solved; namely, to determine the optimal damping of the system by a control of minimum intensity 
in a finite time interval 

p ---~ min, k=Ax+bu+q~vx ,  x ( x )=x*(x )  

x(x+0)  = 0, lu(t)l<~ p, t e T x  
(1.3) 

where 0 is a finite control level. 
Let  u°(t I x*(x), ~x(.)), t • Tx be an optimal open-loop control in problem (1.3). Then system (1.2) is 

stabilized at time x by using the control u * (x) = u°(x Ix* (x), ~ (.)). By construction, u* (x) is a functional 
, , , 0 . , , of u~(-), x~(-): u (x) = u (t Ix (x), ~(-) ) ,  defined for all pairs (of generalized states) {u~(.), x~(.)} for 

which problem (1.3) has a solution. 
In this method of constructing stabilizing controls u*('c) we have not described the rules by which 

one proceeds from the available information {u*(.), x*(-)} to the test perturbation ~( . ) .  These rules 
may be arbitrary, but the result of stabilization will be better, the more accurately the test signal ~ ( . )  
can approximate the future perturbation w*(t), t • T~. Clearly, this is possible only for fairly regular 
perturbations. This indicates the effective limits of the method. One way of using generalized states 
for optimal control problems was described in [6]. 

A device which, in every specific process, is capable of computing such controls u*(x), x t> 0, in real 
time will be called an optimal stabilizer (based on generalized states). 

The purpose of this paper is to describe an algorithm for the operation of an optimal stabilizer and 
to point out some auxiliary optimal control problems that may be used, along with (1.3), to stabilize 
dynamical systems under persistent perturbations. 

2. O P T I M A L  S T A B I L I Z E R  O P E R A T I N G  A L G O R I T H M  

At the starting time x = 0, utilizing prior information, some signal ~0(t) • W, t • T o = [0, 0[ is chosen, 
and an open-loop solution of problem (1.3) 0 is constructed. The optimal open-loop control u (t Ix0, w0()), 
t • To, of problem (1.3) has the form [7] 

u°(tlXo, Wo(')) = P sign A°(t), t • T o (2.1) 

where A°0(t) = -y'F(O - t)b, t • To, is an optimal co-control, y is an optimal n-vector of potentials, F(t), 
t I> 0, is the fundamental solution matrix of the system x = Ax and p =y'F(O)xo is the optimal (minimal) 
intensity of the control. 

It is obvious from (2.1) that the computation at time x of the control value u*(x) = u ° ('c Ix*(x), ~ ( . ) )  
requires information on the parameters 

tl(X) ..... tp(x)(x); y(x); p(x) (2.2) 

where tl('~ ) < . . .  < tp(x)('~) are the switching points of the t~ptimal open-loop control 

0 * u. ( t l x  (X), ~T(')), t~Tx ,  (A°(ti(x))=0, i=l ,p(x)) .  

It follows from the optimal conditions that the parameters (2.2) satisfy the system of equations 

p ( T )  ti+l (X) T+O 

~, S F(z+O-t)bdtk ip( 'c )+F(O)x*(z)+ ~ F(z+O-t)qCv~(t )dt=O 
i = 0  ti('~ ) 1[ 

- y ' ( x ) F ( x + O - t i ( x ) ) b = O ,  i=  1, p(x) 

y'(x)F(O)x*(x) = p(x) 

(2.3) 

where 

t o (X) = X, tpc~l+t ('C) = X + O, k i = sign A ° (t i (Z) + 0), i = O, p(X). 
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We shall refer to the equations of system (2.3) as the governing equations of the optimal stabilizer, 
and to the set S('0 -'= {p(x); ki, i = 0,p(x)} as the structure of the governing equations at time x. Following 
[8], we can prove that under fairly general conditions the Jacobian of system (2.3) is non-singular over 
ranges with constaJat structure. To compute the elements (2.2) over ranges with constant structure at 
time x, we can use the quantities t l (x  - h ) , . . . ,  t.(x)(x - h): y(x  - h); p(x - h), where h is the operating 
cycle of the optimal stabihzer, as an mltlal approxamatlon. The details of the real-tune numencal solution 
of systems like (2.3) ox~er ranges with constant structure, as well as rules for moving from range to range, 
are analogous to those presented in [8]. 

Having solved the governing equations, one can form the control u*(x)  = k0p(x) and apply it to the 
input of system (2.:2). 

To investigate the properties of a dynamical system stabilized in the above manner, let us calculate 
the derivative dp/d~ in the case when the perturbation w*(x) ,  t >t O, applied to the system is identical 
with the test signal ~ ( t ) ,  t /> x, x i> 0, included in the stabilization algorithm. 

By (3.3), dp/dx = --e'n+pG-l~f/~% where 

e ; + . = ( 0  ..... 0 ,])  
n + p - I  

G is the Jacobian of system (3.3) 

G =  

217(1: + 0 - t i ('¢))bkiP, /,~) ti+t(x~ 
0 t F(x  + 0 - t)bdtk i 

i = 1, p(x)  i=0 t~(~) 

a ;ffi o ---t:. . . . . . . . . . . . . . . . . . . . . .  
0 

i = 1, p('¢) i = 1, p(x)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 x*(x)F'(O) -1 

and Of/Ox is the partial derivative of the left-hand side of system (2.3) with respect to x. 
It can be shown that 

e'+l,G -I = (-y ,0 ..... O) 

P 

and, consequently, dp/dx = y'bkp(x)p + y 'q~x(x + 0). 
Thus, the intensity p = p(x*(x)) of the stabilizing control u*(x), x I> 0, is a decreasing function (dp/dx 

< 0) in the region 

{x ¢ Rn : p(x) > y'q~vx(x +O)/IA°(x+O)l} 

where the norm of the state x*(x), x i> 0, will also decrease 

IIx*(~)ll~< F-J(O) ~ F ( x + O - t ) b d t ' k i  + 
ti(~) 

m -o i) + F- l (8)  [ F ( ~ + e - t ) y ' b k p ( ~ ) l ( y ' q ) d t  O(x*(x)) 

Remark. It is obvious from the above arguments that the minimum intensity p(x) of the stabilizing control 
may be treated as a Lyapunov function satisfying the conditions of the theorem of asymptotic stability when 
w*(t) =- O, t >! 0 [5, 9]. 
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3. S T A B I L I Z A T I O N  WITH C O M P E N S A T I O N  OF TEST P E R T U R B A T I O N S  

Along with 0, we will introduce another parameter 01 > 0 such that 0 = k*01, k* ~ N. 
At a given time x, consider the minimum interval [l*01,/*01] that covers the interval Tx, i.e. x ~ [1.01, 

(h + 1)01[, where 

I*=S l . + k * ,  if x= l .0  I 
k* l .+  +i,  if x>/.0~ 

Using the times 101, l = 1., . . . ,  l* - 1, we construct solutions U°l(t I w.(')), t ~ [/01, (l + 1)01[ of the 
following problems of compensating the test perturbations 

Pl ~ m i n ,  k = Ax + bu t + q ~ , . ,  x(lOj ) = 0 

x((l+ i)01) =0, lUl(t)l<~pt (3.1) 

t6[10 I, (1+1)01[, l = l .  .. . . .  / * - i  

where 

~Cvl.e, (t), t ~ [l.O,,x[ 
li,.(t) 

L~,,(t), t >/x 

As a result, at any time x we obtain a compensating control for the interval Tx 

[ u~. (tl ~, (-)), 

(tl 

t~[x,  (/o + I)O,[ 

t e [ ( / , + l ) 0  I, (/.+2)01[ 

t ~ [ ( / * - l ) 0  l, T+0[ 

Knowing the values of the control t2x(.) = (t2x(t), t e T0, we will construct a realization of a positional 
solution ~(x) = u°(xl x*(x), ~(.), ~ ( . ) )  of the optimal damping problem 

p---~min, k = A x + b ~ + b ~ + q ~ v  x, x(~)=x*(x) (3.2) 

x ( x + 0 ) = 0 ,  I~(t)l<~p, t e [ x , x + O [  

In the same regime, the signal u*(x) = t2x(x) + if(x) is applied at time x to the input of system (2.2). 

Remark. The problem considered above, of stabilization through compensation of the test signal, is a simplified 
version of the compensation problem. The problem in its full complexity may be written in the form 

q0-->min, x = A x + b u + q w ,  x(x)=x*(x), Ixj(t)l<~qo, j=l,-'n, lu(t)l~<l, t ~ T  x (3.3) 

In mathematical terms, problem (3.3) is much more complicated than problem (3.1), (3.2), since it involves phase 
constraints. Although the method used here may be generalized to such problems too, the profit gained thereby 
hardly justifies the effort. It was therefore decided to confine attention to problem (3.1), (3.2), which approximates 
the main idea of compensation but leads to simpler constructions. The full compensation problem will be solved 
below, in Section 4, for a special case in which it becomes trivial. 

4. A S P E C I A L  CASE OF THE S T A B I L I Z A T I O N  P R O B L E M  

Suppose that system (1.1) to be stabilized is subject to a bounded scalar perturbations w(t), t >I O, 
and that its real motion is described by the equation 

= Ax + bu + bw(t), x(O) = x o (4.1) 
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This situation arises, for example, if the control system is described by an nth order differential 
equation 

X (n) + a lx (n- I )+ . . .  +anx = u + w(t) 

In that case the algorithm described in Section 3 may be modified as follows. 
Suppose that at time x we have a known test perturbation fix(t), x e To. As in Section 3, the control 

u*(x) applied at the input of system (4.1) may be expressed as the sum of a compensating control and 
a damping control: u*(x) = t2x(x) + ~(x). At time x we assume that t2x(x) = - ~ ( x ) .  The damping control 
~(x), x I> 0 is constracted as a solution of the problem 

p--*min, k=Ax+b?t,  x('O=x*(x), x ( x + 0 ) = 0 ,  Ifi(t)l~<p, t ~ T  0 

on the assumption t]aat the influence of the perturbation ~ ( t ) ,  x ~ To, is fully compensated. 
The algorithm described may be supplemented by the following procedure. To compensate the effect 

over the interval T of the perturbation ~ ( . ) ,  x ~< 0, we construct a solution of the problem 

9---~min, k = A x + b f f + b f v x ,  x(x)=x°(x) ,x(O)=O, Ifi'(t)l~<p, t~[x ,0[  

where x°(x), x ~ To, (x ° (0) = x0) is a model trajectory, defined by the control t2(x) = 12(x I x°(x), if'x(')) 
and the perturbation ~x(x). 

At each time x, we calculate the deviation of the real trajectory x*(x), x ~ To, of system (4.1) from 
the model trajectory x°(x): x*(x) - x°(x). From the time ~ < 0 at which the action of the excluded 
perturbations w*(x) -  ~x, x < ~, produces a deviation II x*(~) -x°(~)ll/> e we begin to solve the problem 

p---)min, x=Ax+bf i ,  x (x )=x*(x ) -x° (x ) ,  

x ( x + 0 ) = 0 ,  Ifi(t)l~<p, t~T~, x~[$,0[  

where e is a parameter characterizing the closeness of the real and model trajectories. The control 
u*(x) = t2~(x) + tT(x) is applied to the input of system (4.1). At time x = 0, we proceed to the algorithm 
described previously in this section. 

5. E X A M P L E S  

To illustrate the above results, let us apply them to the problem of stabilizing a mathematical pendulum in its 
upper, unstable equilibrium position, by a torque applied to the axis of the suspension. The torque is produced by 
a slave mechanism which acts as an integrating element. The slave mechanism, in turn, is subject to a certain 
controlling force u [10]. 

The linearized equation of motion of a mathematical pendulum is 

J:l = x2, -1:2 = Xl + x3, -~3 = u 

where xl = tp is the angle by which the pendulum deviates from the vertical, x2 = tp' is the angular velocity, and x3 
is the torque applied to the pendulum. As a perturbed initial state x(0) we take the point x0 = (1.4, -1.25, -0.2). 

Let us assume initiaily that, under the action of a persistent perturbation w*(t), t ~ O, the dynamical system 
satisfies the equation 

iq =x 2, ~2 =xl +x3+w*(t), -~3 =u, x(0)=x0 (5.1) 

We put 

w*(t)=ao(t)+al(t)sint+wl(t), t>~O (5.2) 

where a0(t) = 0.5(1 + 0.1sin 0.30, al(t) = 1 + 0.2sin 0.2t, Wl(t ) = 0.1 + 0.1cos 5t. The value of the parameter 0 
is set equal to three. 

Stabilization of system (5.1) by using a classical feedback-controlled damper [5] yields the trajectoryx*l(X), x >t 
0, of system (5.2) represented in Fig. 1 (curve 1). 

When stabilization was performed according to the scheme of Section 2, the function 

fvx(t)=ao(x)+al(x)sint, t>~x, x~O (5.3) 
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was used as a test perturbation. The resulting trajectory (x),x*l(X), x >! 0, is shown in Fig. 1 (curve 2). 
Now let us consider the case in which the stabilized system, subject to persistent perturbations, is described by 

the equation 

.~I=X2, jC2=XI+X3 ' j c 3 = u + w * ( t ) ,  x(0)=x 0 (5.4) 

where the perturbations w*(t) ,  ~x(t),  t >t ~, x >! O, are taken equal to the functions (5.2) and (5.3), respectively. 
Curve 1 in Fig. 2 represents the trajectoryxl'(x), x >I 0, of system (5.4) when stabilized according to the scheme 

of Section 3. Curve 2 is the result of stabilization by the Kalman-Letov method [10]. Curve 3 is the result of 
stabilization of system (5.4) according to the scheme of Section 3. Curve 4 was plotted using the damper of [5]. 
Curves 5 and 6 illustrate the stabilization of system (5.4) according to the scheme of Section 4. Curve 5 represents 
the trajectory x~(x),  x >i O, obtained by using a single-phase stabilization procedure, and curve 6 represents the 
corresponding result with a two-phase procedure. 

This research was carried out  with the financial support  f rom the Internat ional  Science Foundat ion  
(MW3000).  
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